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So what is Dark Matter?

® As particle physicists, we need to know
how dark matter fits into a particle
description of Nature.

® What do we know about it?
® Dark (neutral)
® Massive (cold/non-relativistic)

® Still around today (stable or with a
lifetime of the order of the age of
the Universe itself).

® Nothing in the Standard Model of
particle physics fits the description.

“Cold Dark Matter: An Exploded View” by Cornelia Parker



Not Ordinary Matter
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woawa Nucleosynthesis
determines the density of
baryons at early times; the
amount of baryonic matter
required is far smaller than
the total quantity of
matter.
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Primordial black holes remain a possible
candidate, but would need some kind of

mechanism to explain their production and mass 10-* 10-% 10-* 10° 10' 10® 10° 10* 10° 10°
distribution. mass of perturber (M)




The Dark Matter Questionnaire

Mass
Spin
Stable?
Yes No
Couplings:
Gravity

Weak Interaction!?
Higgs!?
Quarks / Gluons?
Leptons!?
Thermal Relic?
Yes No



Map of DM-SM Interactions

Photons

Anti-matter

Gamma Rays

Leptons

LEP

Neutrinos Ultimately, we need to fill out the

questionnaire experimentally.
But as we try to relate the results
of experiments to one another and
unravel the deeper theoretical
underpinning, we need at least
some kind of theoretical framework
in which to cast our progress.

Direct Scattering
ILC?

What could the theory be?
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A Dizzying Array...

Every theory on the previous slide contains an interesting, worthy
vision for dark matter. And | am sure some are probably missing...

Any of them could be the truth, or contain an element of the truth.
We need to be prepared.

There are also far far too many for me to go through them in any
detail. | will focus my discussion on three broad categories:

® Axions, and axion-like particles
® Sterile Neutrinos
® Weakly Interacting Massive Particles (WIMPs)

The relevant Snowmass CF reports (CFl,2, 3,4 and 6) contain a lot of
very useful discussion of the details which | will not have time to
address here, including (more) discussion of many theories.



Sterile Neutrino DM

Dark matter may be connected to one of the
other incontrovertible signals of physics beyond
the SM: neutrino masses.

The simplest way to generate neutrino masses
in the SM is to add some number of gauge
singlet fermions to play the role of the right-
handed neutrinos.

If the additional states are light and not strongly
mixed with the active neutrinos (as required by
precision EWV data), they can be stable on the
scale of the age of the Universe and play the
role of dark matter.
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Arriving at the right amount of dark matter
typically requires delicately choosing the mass
and mixing angle, or invoking some other new
physics.




Sterile Neutrino DM

® Structure formation requires
masses greater than a few keV
to avoid washing out small scale
structures.

® Though rare, sterile neutrinos : excluded by X-ray search
. . . Chandra, Suzaku, XMM-Newton
can decay INto ordlnary (assuming standard cosmology)
neutrinos and a photon, | eeie nemrnas.
. R R make up 100% of dark matter
resulting in (mono-energetic) (any cosmology)

keV energy photons.

lower bounds on the mass

derived from small-scale structure

® Constraints from the lack of St vary depending on cosmological production scenario
observation of such a signal put : -
limits in the plane of the mass
versus the mixing angle.




Axion Dark Matter

The axion is motivated by the strong CP-
problem, where the QCD 0 term is cancelled by
introducing a scalar field -- the QCD axion.

1071 ORNL, Harvard
1074 MIT, BNL

‘ LNPI
Sussex, RAL, ILL

The axion’s mass and coupling are determined
by virtue of its being a pseudo-Goldstone boson
and are characterized by the energy scale f, >

9
107 GeV. Ma ~ fr/fa X My
10°'  Standardmodel Predictions

The axion is unstable, but its tiny mass and weak

couplings conspire to predict that for much of wo e 0w
the viable parameter space its lifetime is much

greater than the age of the Universe itself.
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More generally, string theories often contain A/
axion-like particles which are long-lived and can !A@“ CNL/
play the role of dark matter but have less tight =l
correlations between their masses and =3
couplings.




Axion Dark Matter

10°

The axion has a model-dependent
coupling to electromagnetic fields

that is somewhat smaller than | / f.. T ;I|l
Y LA
. . . o Microwave
There is a rich and varied program - I
of axion searches based on this 1

coupling.

One particular search looks for
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Other very interesting new ideas
are to look for time variation in the
neutron EDM or the induced
current in an LC circuit.
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WIMPs

® One of the most attractive proposals for dark matter
is that it is a VWeakly Interacting Massive Particle.

® WIMPs naturally can account for the amount of
dark matter we observe in the Universe.

® WIMPs automatically occur in many models of
physics beyond the Standard Model, such as
supersymmetric extensions with R-parity, extra-
dimensional theories with KK-parity, and natural
theories of electroweak symmetry breaking with
T-parity.

$59.99 for 20 servings

Available in Blue Raspberry, Fruit
Punch, and Grape flavors....

® | will try to avoid any further discussion of specific
WIMP theories. Most of the phenomena we will see ’ﬁ“@'
are represented to different degrees in any of the k\\“\“
=<

=
commonly considered theories of WIMPs. ”




The WIMP Miracle

One of the primary motivations for WIMPs is the L~ o~ —= I
“WIMP miracle”, an attractive picture explaining |© O O O '
the density of dark matter in the Universe today. I O !

The picture starts out with the WIMP in chemical
equilibrium with the Standard Model plasma at
early times.
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Equilibrium is maintained by scattering of VWIMPs e e e e = = = -
into SM particles, XX ->

While in equilibrium at temperatures below its
mass, the WIMP number density follows the X
Boltzmann distribution:

mT X

heq = (ﬁ) " Bxp Loy



Freeze-Out

Expansion of the Universe eventually
results in a loss of equilibrium.

At the “freeze-out” temperature, the
WIMPs are sufficiently diluted that they
can no longer find each other to annihilate
and they cease tracking the Boltzmann
distribution.

The temperature at which this occurs
depends quite sensitively on a(XX -> SM):
more strongly interacting WIMPs will stay
in equilibrium longer, and thus end up with
a smaller relic density than more weakly
interacting WIMPs.

Universe
Expands
0 ~ O
IO O Ol
1 O O .
10 O:




Relic Density

Increasing <o,v>

x=m/T increasing
is
T decreasing
is
time increasing

>
v
n
=
v
(]
—
v
0
=
z
ap
=
>
o
=
o
O

10 100
x=m/T (time -)

® The observed quantity of dark matter is suggestive of a cross section for
annihilation into SM particles: <ov> ~ 3 x 1026 cm?/s, roughly independently
of the mass of the dark matter.



Particle Probes of WIMPs

SM Particles

Indirect Detection

SM Particles WIMPs

Collider Searches

Direct Detection

SM Particles

®  The common feature of particle searches for WIMPs is that all of them are
determined by how WIMPs interact with the Standard Model.



Direct Detection

) X une: larger v
® Direct detection searches for dark matter J &

scattering off of terrestrial targets. >

® Amazing progress has shown that backgrounds
can be rejected to a very high degree.

® Handles include the recoil energy spectrum,
distribution of recoil direction, and modulation
of the signal with time.

WIMP Earth

December: smaller v

® One challenge for the future is improving sensitivity
to low mass dark matter (which carries less
momentum and results in smaller signals).

® Eventually experiments will reach sensitivity to
background neutrinos, which are independently

Signal
interesting but will complicate WIMP searches.

Recoil Energy, Direction, ...



Direct Detection
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Indirect Detection

® |[ndirect detection looks for distinctive products

of o . . 1t Gamma-rays
of WIMP annihilation. i
® High energy gamma rays, neutrinos, and anti- Mﬁ;@igﬁ{% T
. . Ecm~100GeV Lagie VLA
matter are all interesting messengers that could ’ e\

Neutrinos

reveal the presence of dark matter annihilations.

® Gamma rays: point back to their source and +afow pfp, 48
have relatively little propagation uncertainty
in the galaxy.

® Neutrinos: arrive essentially unchanged from
galactic sources.

® Anti-matter: very distinctive signal, but lose
direction and energy en route.

® Challenges include large and often poorly |
understood backgrounds and uncertainties in TR
the dark matter distribution. B



Indirect Detection
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Colliders

High energy colliders offer the
opportunity to produce dark matter in
the laboratory.

Since dark matter typically does not
interact with a collider detector in
transit, it reveals its presence as an
imbalance in momentum conservation.

l:l Z—vv
CMS Preliminary [ w—

Vs =8 TeV
fL dt=19.5 fo"

Colliders have strengths in their exquisite
control over the initial state, and well
understood backgrounds.

Events / 25 GeV

DMA =0.9TeV, M/ =1GeV

UNP d,=1.7, A, =2 TeV

An important challenge is the fact that
any observation of missing momentum
will not be uniquely connected to dark
matter: particles with lifetimes of ~| s o
and ~14 Gyr are essentially the same ' sooEmis:gso[cé o0
signature. '



Colliders
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pMSSM

The MSSM is still our best-studied and
best-motivated vision for physics beyond

the Standard Model. Cahill-Rowley et al, 1305.6921
Reasonable phenomenological models
have ~20 parameters, Ieading to rich and — XENONAT e Excluded by DD and ID
. . . 107° . Survives DD, ID, and LHC e Excluded by ID but not DD
varled VISIONS fOI" dark matter. e  Excluded by LHC but not DD or ID Excluded by DD but not ID
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This plot shows a scan of the pMSSM’
parameter space in the plane of the
WIMP mass versus the Sl cross section.
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The colors indicate which (near) future
experiments can detect this model: LHC
only, Xenon |ton only, :

, or

It is clear that just based on which
experiments see a signal, and which
don’t, that there could be (potentially
soon) suggestions of favored parameter
space(s) from data.

m(x}) (GeV)



pMSSM

The MSSM is still our best-studied and
best-motivated vision for physics beyond
the Standard Model.

Cahill-Rowley ef y Ly

Direct Detection

Reasonable phenomenological models
have ~20 parameters, leading to rich and — XENC ) 00 ana 1D

. o« o Surviv )y ID but not DD
varied visions for dark matter.

e Excludec™ 4by DD but not ID

This plot shows a scan of the "pMS!
parameter space in the plane of the
WIMP mass versus the Sl cross sec

X

Collider Searches

The colors indicate which (near) future
experiments can detect this model: LHC
only, Xenon |ton only, ,

, or can’t be discovered.

It is clear that just based on which
experiments see a signal, and which X
don’t, that there could be (potentially

soon) suggestions of favored parameter

space(s) from data.

Indirect Detection



Simplified Models

We can also analyze dark matter searches
in the context of simplified models.

These contain the dark matter, and some
of the particles which allow it to talk to the
SM, but are not meant to be complete
pictures.

As a simple example, we can look at a Limiton g_ - ug Model
heory where the dark matter is a Dir

theory where the da atter is a Dirac

fermion which interacts with a quark and a
(colored) scalar mediating particle.

o
a

DM

o
W

o
w

Uppcerﬂ?bng‘

There are three parameters: the DM mass,
the mediator mass, and the coupling g.

These are like the particles of the MSSM,
but with subtle differences in their
properties and more freedom in their

900 1000

interactions. M. (GeV)

Just like the MSSM was just one example of
a complete theory, this is only one example
of a “partially complete” one.



Simplified Models

Moving away from complete theories, we
come to simplified models.

These contain the dark matter, and some

of the particles which allow it to talk to the
SM, but are not meant tg
pictures.

As a simple example, . |- u, Model

theory where the dark
fermion which interact$ T e G
(colored) scalar mediating particle.
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There are three parameters: the DM mass,
the mediator mass, and the coupling g.
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Contact Interactions

In the limit where the mediating particles
are heavy compared to all energies of
interest, we are left with a theory
containing the SM, the dark matter; and
nothing else.

The residual effects of the mediators are
left behind as what look like non-
renormalizable interactions between DM

and the SM.
X
@

These are the simplest and least complete

description of dark matter we can imagine.

For any particular choice of interaction
type, there are two parameters: the DM
mass and the strength of that interaction.
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Contact Interactions

In the limit where the mediating particles
are heavy compared to all energies of
interest, we are left with a theory
containing the SM, the dark matter; and

nothing else.
DM interacting wl

The residual effects of the mediators ar:
left behind as what look like non-
renormalizable interactions between DM
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mass and the strength of that



Lepton/Gluon Interactions
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2013 A Possible Timeline
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pANE

LUX sees a handful of
elastic scattering events

consistent with a DM
mass < 200 GeV.

Fermi observes a faint
gamma ray line at 150
GeV from the galactic
center.

2015

20 | 6 Mass: 150 +/- |5 GeV
Spin
Stable?
Couplings:
2017 Gravity
Weak Interaction?
Higgs?
20 | 8 Quarks / Gluons

Leptons?

Thermal Relic?
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2015

Two LHC experiments
see a significant excess of
leptons plus missing
energy.

Xenon sees
a similar signal.
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Weak Interaction?
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A Possible Timeline

LUX sees a handful of
elastic scattering events

consistent with a DM
mass < 200 GeV.

Two LHC experiments *

Xenon sees e seeas’
a similar signal. o lept i
. Mass: |50 +/- |15 GeV
. Spin: >0
{ ]
° Stable?

A positive signal of axion
conversion is observed at
an upgraded ADMX.

J Couplings:
0 Gravity
Weak Interaction?
Higgs?
Quarks / Gluons
Leptons

Thermal Relic?
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e Fermi observes a faint .
e gamma ray line at 150
e GeV from the galactic

[ ]
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Gravity
Photon Interaction
Higgs?
Quarks / Gluons?
Leptons?

Thermal Relic?



2013 A Possible Timeline
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Mass: 150 +/- 0.1 GeV
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20 I 5 Gravity
Weak Interaction?
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2017

A positive signal of axion
conversion is observed at
an upgraded ADMX.

2018

2

Mass: 20 peV
Spin: 0
Stable?
Couplings:
Gravity
Photon Interaction
Higgs?
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Leptons?

Thermal Relic?

Observation at a Higgs
factory indicates that the
interaction with leptons is
too strong to saturate the
relic density.
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elastic scat Stable?
consistent C i
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Gravity
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A multi-pronged search strategy identifies a mixture of
dark matter which is 50% classic WIMP and 50% axion.
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Outlook

Putting together a detailed particle description of dark matter will
necessarily involve many experimental measurements.

Important details such as the mass and spin will hopefully come along as
part of that program.

The US plays a leading role in a vibrant program that covers a huge space
of possibility from ultra-weakly interacting particles such as axions and
sterile neutrinos to WIMPs and beyond.

For WIMPs, the three traditional pillars of dark matter searches: direct,
indirect, and collider, naturally probe different parts of the space of DM-SM
couplings.

® They are highly complementary to one another in terms of discovery
potential.

® Considered together, they can probe a large fraction of the space of
interesting WIMP models in the near future.



